Near-infrared reflectance spectroscopy predictions as indicator traits in breeding programs for enhanced beef quality.
نویسندگان
چکیده
The aims of this study were 1) to investigate the potential application of near-infrared spectroscopy (NIRS) to predict beef quality (BQ) traits, 2) to assess genetic variations of BQ measures and their predictions obtained by NIRS, and 3) to infer the genetic relationship between measures of BQ and their predictions. Young Piedmontese bulls (n = 1,230) were raised and fattened on 124 farms and slaughtered at the same commercial abattoir. The BQ traits evaluated were shear force (SF, kg), cooking loss (CL, %), drip loss (DL, %), lightness (L*), redness (a*), yellowness (b*), saturation index (SI), and hue angle. Near-infrared spectra were collected using a Foss NIRSystems 5000 instrument over a spectral range of 1,100 to 2,498 nm every 2 nm, in reflectance mode. After editing, prediction models were developed on a calibration subset (n = 268) using partial least squares regressions, followed by application of these models to the validation subset (n = 940). Estimations of (co)variance for measures of BQ and NIRS-based predictions were obtained through a set of bivariate Bayesian analyses on the validation subset. Near-infrared predictions were satisfactory for measurements of L* (R(2) = 0.64), a* (R(2) = 0.68), hue angle (R(2) = 0.81), and saturation index (R(2) = 0.59), but not for b*, DL, CL, and SF. The loss of additive genetic variance of predicted vs. measured L*, a*, DL, CL, and SF was generally high and was similar to the loss of residual variance, being a function of the calibration parameter R(2). As a consequence, estimated heritabilities of measures and predictions of BQ were similar for traits with high calibration R(2) values. Genetic correlations between BQ measures and predictions were high for all color traits and DL, and were greater than the corresponding phenotypic correlations, whereas both the phenotypic and genetic correlations for SF and CL were nil. Results suggest that NIRS-based predictions for color features and DL may be used as indicator traits to improve meat quality of the Piedmontese breed.
منابع مشابه
Twinning Beef Cows
gestibility or protein quality of SBM, the urease assay is good for detecting underprocessing and the KOH protein solubility assay is good for detecting overprocessing. A combination of the latter two assays is needed to ensure that SBM has neither been underheated nor overheated. The protein dispersibility index (PDI) assay may be superior to the urease and KOH assays as an indicator of minimu...
متن کاملEstimating Nitrogen and Acid Detergent Fiber Contents of Grass Species using Near Infrared Reflectance Spectroscopy (NIRS)
Chemical assessments of forage clearly determine the forage quality; however, traditional methods of analysis are somehow time consuming, costly, and technically demanding. Near Infrared Reflectance Spectroscopy (NIRS) has been reported as a method for evaluating chemical composition of agriculture products, food, and forage and has several advantages over chemical analyses such as conducting c...
متن کاملPotential of Near-Infrared Reflectance Spectroscopy (NIRS) to Predict Nutrient Composition of Bromus tomentellus
Determination of forage quality of available species is one of the fundamentalfactors for the management of rangelands. Near-Infrared Reflectance Spectroscopy (NIRS)was used to analysis the Nitrogen (N), Acid Detergent Fiber (ADF), Dry MatterDigestibility (DMD) and Metabolizable Energy (ME) content of three phenological stages(vegetative, flowering and seeding) of Bromus tomentellus samples in ...
متن کاملDetermination of Protein and Moisture in Fishmeal by Near-Infrared Reflectance Spectroscopy and Multivariate Regression Based on Partial Least Squares
The potential of Near Infrared Reflectance Spectroscopy (NIRS) as a fast method to predict the Crude Protein (CP) and Moisture (M) content in fishmeal by scanning spectra between 1000 and 2500 nm using multivariate regression technique based on Partial Least Squares (PLS) was evaluated. The coefficient of determination in calibration (R2C) and Standard Error of Calibra...
متن کاملDevelopment of near infrared reflectance spectroscopy (NIRS) calibration model for estimation of oil content in a worldwide safflower germplasm collection
The development of NIRS calibration model as a rapid, precise, robust, and cost-effective method to estimate oil content in ground seeds of worldwide safflower germplasm collection grown under different agro-climatic conditions was the key objective of this research project. The oil content was measured by accelerated solvent extraction method in a total of 328 samples collected across 2004 (16...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of animal science
دوره 89 9 شماره
صفحات -
تاریخ انتشار 2011